Chaperonin GroE

Chaperonin GroE

Brand: Takara Bio.
In stock
SKU
Chaperonin GroE
Grouped product items
Product Name Size
Chaperonin Gro EL
SKU: 7330
5 mg
Make An Enquiry
× Product Enquiry
Chaperonin GroE
Chaperonin GroE

Fill in the details below:

Overview

Chaperonin GroE is a 21mer protein complex composed of the subunits GroEL (14mer, 57 kDa) and GroES (7mer, 10 kDa). This complex is thought to support protein expression and folding ability, enabling proteins to form tertiary structures upon (or immediately after) translation. Chaperonin GroE is essential to the assembly (and presumably reassembly after denaturation) of protein complexes in vivo. Both chaperonin GroEL and GroES can be used for refolding denatured proteins to recover functional activity.

Applications

  • Protein expression and folding
  • Refolding denatured proteins

Source

  • Escherichia coli

Badcoe, I. G. et al. Binding of a chaperonin to the folding intermediates of lactate dehydrogenase. Biochemistry 30, 9195–9200 (1991).

Battistoni, A., Carrí, M. T., Steinkühler, C. & Rotilio, G. Chaperonins dependent increase of Cu,Zn Superoxide dismutase production in Escherichia coli. FEBS Lett. 322, 6–9 (1993).

Brandsch, R., Bichler, V., Schmidt, M. & Buchner, J. GroE dependence of refolding and holoenzyme formation of 6-hydroxy-D- nicotine oxidase. J. Biol. Chem. 267, 20844–20849 (1992).

Brunschier, R., Danner, M. & Seckler, R. Interactions of phage P22 tailspike protein with GroE molecular chaperones during refolding in vitro. J. Biol. Chem. 268, 2767–2772 (1993).

Buchner, J. et al. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 1586–1591 (1991).

Escher, A. & Szalay, A. A. GroE-mediated folding of bacterial luciferases in vivo. Mol. Genet. 238, 65–73 (1993).

Fisher, M. T. Promotion of the in vitro renaturation of dodecameric glutamine synthetase from Escherichia coli in the presence of GroEL (chaperonin-60) and ATP. Biochemistry 31, 3955–3963 (1992).

Goloubinoff, P., Christeller, J. T., Gatenby, A. A. & Lorimer, G. H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342, 884–889 (1989).

Goloubinoff, P., Gatenby, A. A. & Lorimer, G. H. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337, 44–47 (1989).

Grimm, R., Donaldson, G., van der Vies, S., Schafer, E. & Gatenby, A. Chaperonin-mediated reconstitution of the phytochrome photoreceptor. J. Biol. Chem. 268, 5220–5226 (1993).

Hartman, D. J., Surin, B. P., Dixon, N. E., Hoogenraad, N. J. & Hoj, P. B. Substoichiometric amounts of the molecular chaperones GroEL and GroES prevent thermal denaturation and aggregation of mammalian mitochondrial malate dehydrogenase in vitro. Proc. Natl. Acad. Sci. 90, 2276–2280 (1993).

Höll-Neugebauer, B., Rudolph, R., Schmidt, M. & Buchner, J. Reconstitution of a heat shock effect in vitro: influence of GroE on the thermal aggregation of alpha-glucosidase from yeast. Biochemistry 30, 11609–14 (1991).

Kern, G., Schmidt, M., Buchner, J. & Jaenicke, R. Glycosylation inhibits the interaction of invertase with the chaperone GroEL. FEBS Lett. 305, 203–205 (1992).

Kubo, T., Mizobata, T. & Kawata, Y. Refolding of yeast enolase in the presence of the chaperonin GroE. The nucleotide specificity of GroE and the role of GroES. J. Biol. Chem. 268, 19346–19351 (1993).

Laminet, A. A. & Plückthun, A. The precursor of beta-lactamase: purification, properties and folding kinetics. EMBO J. 8, 1469–77 (1989).

Martin, J. et al. Chaperonin-mediated protein folding at the surface of groEL through a ‘molten globule'-like intermediate. Nature 352, 36–42 (1991).

Mendozas, J. A., Rogers, E., Lorimers, G. H. & Horowitzsli, P. M. Chaperonins Facilitate the in Vitro Folding of Monomeric Mitochondrial Rhodanese. Biol. Chem. 266, 13044–13049 (1991).

Mizobata, T., Akiyama, Y., Ito, K., Yumoto, N. & Kawata, Y. Effects of the chaperonin GroE on the refolding of tryptophanase from Escherichia coli. Refolding is enhanced in the presence of ADP. J. Biol. Chem. 267, 17773–17779 (1992).

Rosenberg, H. F., Ackerman, S. J. & Tenen, D. G. Characterization of a distinct binding site for the prokaryotic chaperone, GroEL, on a human granulocyte ribonuclease. J. Biol. Chem. 268, 4499–4503 (1993).

Schmidt, M. & Buchner, J. Interaction of GroE with an all-beta-protein. J. Biol. Chem. 267, 16829–16833 (1992).

Van der Vies, S. M., Viitanen, P. V., Gatenby, A. A., Lorimer, G. H. & Jaenicke, R. Conformational states of ribulose bisphosphate carboxylase and their interaction with chaperonin 60. Biochemistry 31, 3635–3644 (1992).

Viitanen, P. V. et al. Chaperonin-facilitated refolding of ribulose bisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are potassium dependent. Biochemistry 29, 5665–5671 (1990).

Viitanen, P. V., Donaldson, G. K., Lorimer, G. H., Lubben, T. H. & Gatenby, A. A. Complex interactions between the chaperonin 60 molecular chaperone and dihydrofolate reductase. Biochemistry 30, 9716–9723 (1991).

Wynn, R. M., Davie, J. R., Cox, R. P. & Chuang, D. T. Chaperonins groEL and groES promote assembly of heterotetramers (alpha 2 beta 2) of mammalian mitochondrial branched-chain alpha-keto acid decarboxylase in Escherichia coli. J. Biol. Chem. 267, 12400–12403 (1992).

Zheng, X., Rosenberg, L., Kalousek, F. & Fenton, W. GroEL, GroES, and ATP-dependent folding and spontaneous assembly of ornithine transcarbamylase. J. Biol. Chem. 268, 7489–7493 (1993).

Write Your Own Review
You're reviewing:Chaperonin GroE
Your Rating

Overview

Chaperonin GroE is a 21mer protein complex composed of the subunits GroEL (14mer, 57 kDa) and GroES (7mer, 10 kDa). This complex is thought to support protein expression and folding ability, enabling proteins to form tertiary structures upon (or immediately after) translation. Chaperonin GroE is essential to the assembly (and presumably reassembly after denaturation) of protein complexes in vivo. Both chaperonin GroEL and GroES can be used for refolding denatured proteins to recover functional activity.

Applications

  • Protein expression and folding
  • Refolding denatured proteins

Source

  • Escherichia coli

Badcoe, I. G. et al. Binding of a chaperonin to the folding intermediates of lactate dehydrogenase. Biochemistry 30, 9195–9200 (1991).

Battistoni, A., Carrí, M. T., Steinkühler, C. & Rotilio, G. Chaperonins dependent increase of Cu,Zn Superoxide dismutase production in Escherichia coli. FEBS Lett. 322, 6–9 (1993).

Brandsch, R., Bichler, V., Schmidt, M. & Buchner, J. GroE dependence of refolding and holoenzyme formation of 6-hydroxy-D- nicotine oxidase. J. Biol. Chem. 267, 20844–20849 (1992).

Brunschier, R., Danner, M. & Seckler, R. Interactions of phage P22 tailspike protein with GroE molecular chaperones during refolding in vitro. J. Biol. Chem. 268, 2767–2772 (1993).

Buchner, J. et al. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 1586–1591 (1991).

Escher, A. & Szalay, A. A. GroE-mediated folding of bacterial luciferases in vivo. Mol. Genet. 238, 65–73 (1993).

Fisher, M. T. Promotion of the in vitro renaturation of dodecameric glutamine synthetase from Escherichia coli in the presence of GroEL (chaperonin-60) and ATP. Biochemistry 31, 3955–3963 (1992).

Goloubinoff, P., Christeller, J. T., Gatenby, A. A. & Lorimer, G. H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342, 884–889 (1989).

Goloubinoff, P., Gatenby, A. A. & Lorimer, G. H. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337, 44–47 (1989).

Grimm, R., Donaldson, G., van der Vies, S., Schafer, E. & Gatenby, A. Chaperonin-mediated reconstitution of the phytochrome photoreceptor. J. Biol. Chem. 268, 5220–5226 (1993).

Hartman, D. J., Surin, B. P., Dixon, N. E., Hoogenraad, N. J. & Hoj, P. B. Substoichiometric amounts of the molecular chaperones GroEL and GroES prevent thermal denaturation and aggregation of mammalian mitochondrial malate dehydrogenase in vitro. Proc. Natl. Acad. Sci. 90, 2276–2280 (1993).

Höll-Neugebauer, B., Rudolph, R., Schmidt, M. & Buchner, J. Reconstitution of a heat shock effect in vitro: influence of GroE on the thermal aggregation of alpha-glucosidase from yeast. Biochemistry 30, 11609–14 (1991).

Kern, G., Schmidt, M., Buchner, J. & Jaenicke, R. Glycosylation inhibits the interaction of invertase with the chaperone GroEL. FEBS Lett. 305, 203–205 (1992).

Kubo, T., Mizobata, T. & Kawata, Y. Refolding of yeast enolase in the presence of the chaperonin GroE. The nucleotide specificity of GroE and the role of GroES. J. Biol. Chem. 268, 19346–19351 (1993).

Laminet, A. A. & Plückthun, A. The precursor of beta-lactamase: purification, properties and folding kinetics. EMBO J. 8, 1469–77 (1989).

Martin, J. et al. Chaperonin-mediated protein folding at the surface of groEL through a ‘molten globule'-like intermediate. Nature 352, 36–42 (1991).

Mendozas, J. A., Rogers, E., Lorimers, G. H. & Horowitzsli, P. M. Chaperonins Facilitate the in Vitro Folding of Monomeric Mitochondrial Rhodanese. Biol. Chem. 266, 13044–13049 (1991).

Mizobata, T., Akiyama, Y., Ito, K., Yumoto, N. & Kawata, Y. Effects of the chaperonin GroE on the refolding of tryptophanase from Escherichia coli. Refolding is enhanced in the presence of ADP. J. Biol. Chem. 267, 17773–17779 (1992).

Rosenberg, H. F., Ackerman, S. J. & Tenen, D. G. Characterization of a distinct binding site for the prokaryotic chaperone, GroEL, on a human granulocyte ribonuclease. J. Biol. Chem. 268, 4499–4503 (1993).

Schmidt, M. & Buchner, J. Interaction of GroE with an all-beta-protein. J. Biol. Chem. 267, 16829–16833 (1992).

Van der Vies, S. M., Viitanen, P. V., Gatenby, A. A., Lorimer, G. H. & Jaenicke, R. Conformational states of ribulose bisphosphate carboxylase and their interaction with chaperonin 60. Biochemistry 31, 3635–3644 (1992).

Viitanen, P. V. et al. Chaperonin-facilitated refolding of ribulose bisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are potassium dependent. Biochemistry 29, 5665–5671 (1990).

Viitanen, P. V., Donaldson, G. K., Lorimer, G. H., Lubben, T. H. & Gatenby, A. A. Complex interactions between the chaperonin 60 molecular chaperone and dihydrofolate reductase. Biochemistry 30, 9716–9723 (1991).

Wynn, R. M., Davie, J. R., Cox, R. P. & Chuang, D. T. Chaperonins groEL and groES promote assembly of heterotetramers (alpha 2 beta 2) of mammalian mitochondrial branched-chain alpha-keto acid decarboxylase in Escherichia coli. J. Biol. Chem. 267, 12400–12403 (1992).

Zheng, X., Rosenberg, L., Kalousek, F. & Fenton, W. GroEL, GroES, and ATP-dependent folding and spontaneous assembly of ornithine transcarbamylase. J. Biol. Chem. 268, 7489–7493 (1993).

Write Your Own Review
You're reviewing:Chaperonin GroE
Your Rating